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Abstract

Non-parametric time—frequency techniques are increasingly developed and employed to process non-
stationary vibration signals of rotating machinery in a great deal of condition monitoring literature.
However, their capacity to reveal power variations in the time—frequency space as precisely as possible
becomes a hard constraint when the aim is that of monitoring the occurrence of mechanical faults.
Therefore, for an early diagnosis, it is imperative to utilize methods with high temporal resolution, aiming
at detecting spectral variations occurring in a very short time. This paper proposes three new adaptive
parametric models transformed from time-varying vector-autoregressive model with their parameters
estimated by means of noise-adaptive Kalman filter, extended Kalman filter and modified extended Kalman
filter, respectively, on the basis of different assumptions. The performance analysis of the proposed
adaptive parametric models is demonstrated using numerically generated non-stationary test signals. The
results suggest that the proposed models possess appealing advantages in processing non-stationary signals
and thus are able to provide reliable time—frequency domain information for condition monitoring.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

By monitoring machine condition, either continuously or at regular intervals, changes in
machine condition can be detected and repairs made in a timely manner, before breakdown
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occurs. Any major piece of industrial machinery requires a certain degree of maintenance; often,
this maintenance is condition based, that is, decisions regarding the repair or replacement of a
machine part, overhauls, and standard maintenance are made on the basis of the actual condition
of the machine. Thus proper machine condition monitoring procedures can result in lower
maintenance costs and prolonged machine life. The most common family of machine condition
monitoring methods is based on the analysis of vibration and acoustic signals, measured using a
range of sensing techniques [1].

The machine condition signals often demonstrate a highly non-stationary property due
to the fact that defects and incipient failures often manifest themselves in the form of changes
in the spectrum of a measured signal. This phenomenon has increasingly impelled the applications
of non-parametric joint time—frequency (T-F) methods to the analysis of non-stationary
machine vibration signals since they are able to produce an overall view of the behavior of
non-stationary signals by means of the so-called time-varying spectrum which is defined in the
T-F space and represents the evolution of signal power as a function of both time and
frequency [2]. It has seen a surge of such activities in the last decade. The most extensively
employed non-parametric techniques involve the short-time Fourier transform (STFT),
Wigner—Ville (WVD) and Choi—Williams distributions (CWD), wavelet transform and their
enhanced derivatives [3-9].

The most promising application field of such methodology is for the analysis of highly transient
phenomena in machinery. The capacity to reveal power variations in the T-F space as precisely as
possible becomes a hard constraint for non-parametric T-F techniques when the aim is that of
monitoring the occurrence of mechanical faults. At their early stages, faults start as almost
impulsive events and determine a change in the ‘signature’ of the signal in the T-F space [2].
Therefore, for an early diagnosis, it is compulsory to utilize methods with high temporal
resolution, aiming at detecting spectral variations occurring in a very short time. However, the
non-parametric T-F methods suffer from various limitations, respectively. If the number of
sampling points is fixed, the effectiveness of STFT is limited by the fact that it is unlikely to
achieve good resolutions in both time and frequency domains simultaneously due to ‘uncertainty
principle’. In addition, the resolution of STFT partly depends on the type of the window applied.
The performance of WVD and CWD of Cohen class is seriously influenced by a so-called ‘cross-
terms’ which indicates some spurious components that appear among the real frequency
components and detrimentally affect the interpretation of the T-F distribution. The wavelet
transform attracting extensive interests is widely documented in the applications to machine
condition monitoring. Nevertheless, it is found that it can only recover the relatively stronger
frequency components from the vibration signals and gives rise to significant error when
confronting higher frequency components [4,10]. Therefore, it has not yet found its way into the
mainstream of machinery diagnostics.

In comparison, the modern spectral analysis method is more effective. In the modern spectral
analysis, the techniques of time series modeling (AR, MA and ARMA, etc.), known as parametric
spectrum analysis methods, have been applied to vibration signals analysis of rotating machinery
by using time-invariant coefficients [11-13]. As a consequence, both accuracy and resolution can
be significantly improved. It is noteworthy that autoregressive integrated moving average
(ARIMA) model as a powerful technique for analyzing non-stationary signals has been widely
used in forecasting [14-16] and a variety of engineering subjects [17-19]. However, this
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methodology cannot be employed to generate T—F representation since the non-stationary time
series needs to be differenced first until it is stationary and thus constant ARMA model
coefficients are obtained by model identification.

Usually, the autoregressive model (AR) or its multivariate derivative vector autoregressive
model (VAR) is most preferred since it is the best compromise between temporal representation
and speed, efficiency and simplicity of algorithms enabling the estimation of model parameters. In
practice, the spectrum of ARMA process could even be represented purely in terms of the AR
coefficients without resort to compute the MA coefficients [20]. In view of the time-varying
frequency components and magnitudes of non-stationary multivariate vibration signals, it is
natural to assume the coefficient matrices of VAR model to be time-varying. Therefore, the
conventional Levinson—Durbin recursion-based estimation procedure utilized in Ref. [13]
constrains their AR model to some specific stationary conditions only and therefore does not
possess an inherent structure for processing non-stationary vibration signals. Conforto and
D’Alessio [2] presented a comparative study of time-varying univariate AR model and non-
parametric T-F distributions, i.e. STFT and CWD. A time-varying univariate AR model based
on the same parameter estimation mechanism is also proposed and applied to process biological
signals [21]. However, they both presume a deterministic evolution of the coefficients by making
use of deterministic time-dependent basis functions, which, from a theoretical point of view, is not
adequate in applications where a pure stochastic system is assumed. Further, the predetermined
noise components of their models will dramatically reduce the robust property of model under
non-stationary conditions.

Up to now, little attention has been focused on time-varying VAR models where the
evolution law of time-varying coefficients is assumed to be stochastic, whereas the parameter
estimation of time-varying multivariate time series models on the basis of advanced
adaptive filtering theory for optimum condition-based maintenance (CBM) purposes in the
sense of providing highly precise T-F domain information is rarely investigated. Therefore,
on-line parametric modeling of rotating machinery subject to vibration monitoring is
highly desirable for presenting accurate and high-resolution T—F representations so as to satisfy
the requirements of CBM. Previous research related to Kalman filter-based time-varying AR
model can be found from different fields, but without an efficient on-line estimation scheme for
the noise covariance, e.g. Refs. [22-24]. Such a drawback will make the time-varying AR model
unable to yield accurate estimation under highly noisy circumstances. It has not seen previous
research addressing the potential of such a methodology for condition monitoring in the
literature. Our previous study proposed two multivariate state space models transformed from a
time-varying VAR model with a noise-adaptive Kalman filtering algorithm (NAKF) [25] and a
modified extended Kalman filtering algorithm (MEKF) [26], respectively. In this study we
advance our previous work by adding a new state space model on the basis of an extended
Kalman filter (EKF) and present a thorough and comprehensive investigation under a variety of
gear states.

The remainder of this paper is organized as follows. Section 2 presents three state space models
transformed from a time-varying vector autoregressive model by means of NAKF, EKF and
MEKF under three different model assumptions, and related aspects. The model evaluation using
non-stationary simulated signals with abrupt changes is presented in Section 3. Conclusions are
drawn in Section 4.



432 Y.M. Zhan, A.K.S. Jardine | Journal of Sound and Vibration 286 (2005) 429450
2. Description of models
2.1. Motivations

As we know, stationary AR model can only fit stationary time series. However, in machine
condition monitoring practices, the vibration signals are usually non-stationary due to a variety of
reasons, for example, the geometric irregularities or faults of some machinery components.
Therefore, a time-varying AR model characterized by time-dependent model coefficients should
be employed to fit the non-stationary vibration signals. But, how time-dependent are the AR
model coefficients? Consequently, different assumptions can be made to describe the time-
dependent feature of the coefficients of the time-varying AR model. The random walk assumption
that assumes that the AR model coefficients are only disturbed by a white Gaussian noise results
in the model I proposed in Section 2.2. Model II proposed in Section 2.3 considers a more general
assumption that the evolution law of the coefficients of the time-varying AR model is subject to
not only a white Gaussian noise but an unknown constant state coefficient matrix. Model III in
Section 2.4 assumes that the unknown state coefficient is not constant but time-varying. From the
viewpoint of engineering, the three models present three different assumptions to describe how the
time-dependent coefficients of the time-varying AR model evolve when it is employed to fit non-
stationary vibration signals.

2.2. Model I based on NAKF

In this section we present a state space model transformed from VAR model with time-
dependent coefficients and provide recursive algorithms for the implementation of Kalman filter.
A VAR process is a discrete-time multivariate linear stochastic process given by

P
yi= Z Ayig + & (1
k=1
fori=1,2,..., N, that is, the time series can be considered as the output of a linear all-poles filter

driven by a white-noise signal with a flat spectrum, where N is the sample size, p the order of VAR
model, y; the ith measurement vector of dimension d x 1, Aj the kth d x d coefficient matrix of
the measurement y;_,, and ¢; an d x 1 sequence of zero-mean white Gaussian measurement noise.
Considering the non-stationary property of vibration signatures we assume the coefficient
matrices of the above VAR model to be time-varying

P
=Y Ay + & )
k=1

To make use of the Kalman filtering algorithm, it is necessary to develop a state space
representation of model (2). This can be achieved by rearranging the elements of the matrices of
coefficients in a vector form using the vec-operator, which stacks the columns of a matrix on top
of each other from the left to right side. Then, with the following notation:

a; = Vec([Al (l)7 A2(l)a cees Ap(l)]T)’ (3)
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Yi - ?,y?_]5"'5y?_p+])’ (4)

Ci=0,®7Y], (5)

where [, is an d x d identity matrix, ® is the Kronecker product, an appropriate state space
representation of the VAR model with stochastic coefficients can be given by

a1 = f(a;) +vi, (6)

Yi= C,-T,lai + &, (7

where a; is the paf2 x 1 state vector, v; is an pd2 x 1 sequence of zero-mean white Gaussian state
noise, uncorrelated with a; and ¢;, ¢; is the same as in Eq. (1) and uncorrelated with a; and v;, and
Eq. (7) has an adaptive time-varying coefficient CZT_I of dimension d x pd*. We also have do(=
E(ap)), the Gaussian pd* x 1 initial state vector with covariance matrixPojo(= Cov(ap)), and the
noise covariance matrices:

E{vev]} = Ok, (8)

E{ere!} = Ridp_is )

where T denotes transposition, 6 denotes the Kronecker delta sequence, Q) denotes the
covariance matrix of state noise and Rj denotes the covariance matrix of measurement noise. For
convenient implementation, dg and Pyy are arbitrarily chosen in model I and also in the following
models II and III. Suppose that the evolution law of the state vector «; is a random walk process
which results in a state space representation below instead of Egs. (6) and (7)

air1 = a; + v, (10)
yi= C;.Elal'-i-c‘],'. (11)
Thus, with the aid of a standard Kalman filter the following recursive prediction equations:
Pyji1 = Pi_yji—1 + Oy, (12)
djji—1 = a1, (13)

where Pj;_; is the one-step ahead prediction of the state covariance matrix, P;_j;—; 1s the
estimate (error) covariance matrix of the state vector, d;;—; is the one-step ahead prediction
of the state vector, d;_; is the optimal filtering estimate of the state vector a¢;_; and updating
equations

G; = Py 1 Ciy[CY Py Cioy + R, (14)
Py =[I — G;CL|]Pyi_1, (15)
ayi=0; = -1 + Gi(y; — CL_ayi-1) (16)

can be obtained for i =1,2,..., N, where G; is the Kalman gain and the covariance matrix
Q, of state noise is assumed to be known a priori. From the incoming measurement information
»; and the optimal state prediction a;;—; obtained in the previous step, the innovations sequence
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is defined to be

Zi=)i — CiT_lﬁui—l, (17)
which leads to the estimate of R;, using the i/ most recent residuals, given by
R 1 ¢
Ri= =72 = =, (18)
where
1<
PO e (19)

is the mean of the innovations up to the ith time instant. Note that the estimation approach (18)
requires the white Gaussian property of z; [27]. Obviously, this property can be obtained if the
Kalman filter operates in its optimum state. The optimum filter behavior will be examined by the
test described in Section 2.6. Therefore, an adaptive Kalman filter for estimating the state as well
as the noise covariance matrices can be called an NAKF.

It should be pointed out that if the model is of non-stationarity and in the absence of any prior
information on the initial state, do(= E(ap)) can be set to zero and Pyjo(= Cov(ap)) to K times the
identity matrix where K is a very large number [28]. This large covariance matrix indicates that
little or nothing is known of the initial state. In effect we can also use the first few measurements
to estimate the start-up values, so again the few prediction errors and variances should be omitted
from the likelihood function. These two approaches are both applicable for the situation of
vibration signals. However, this issue should not be a great concern since a recursive filtering
scheme based on the periodic feature of vibration signals of rotating machinery will allow one to
choose arbitrary initial model parameters.

2.3. Model II based on EKF

Suppose that a linear system with state space description below instead of Egs. (10) and (11)

a1 = Ma; + v, (20)
yi= C,'T_lai + & (21)
is being considered, where, assuming n = de for simplicity, M; = diag[m,, ..., m,]is an unknown

constant diagonal coefficient matrix and, as before, a; € R”", v; € R", & € R, and v; and ¢; are
uncorrelated white Gaussian noise sequences. Let us assume a vector 6 to represent the unknown

constant elements m; fori = 1,...,n, namely 0 = (m, ... ,mn)T. The objective is to estimate a¢; and
identify 6 which must be treated as a random vector such as
Oiy1 = 0; + {;, (22)

where {; is any zero-mean white Gaussian noise sequence uncorrelated with ¢ and with
preassigned positive definite covariances Cov((;) = W,. Otherwise, this assumption would not
lead us anywhere since its value cannot be updated. In applications, we may choose W; = W for
all i, where W is an arbitrary constant n x n matrix. Now the system equations (20) and (21)
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together with assumption (22) can be reformulated as the nonlinear model

iy M;(0)a; Vi
[ml] Zl 0, ]* M’ (23)

i

a
yi=ICL 0,

+ &, (24)

where the parameters are treated as additional states form an augmented state vector. The EKF
procedure which takes real-time linear Taylor approximation can then be applied to estimate the
state vector which contains 0; as its components. That is, 0; is estimated optimally in an adaptive
way. Thus, the following EKF algorithm can be derived fori=1,...,n.

Set
flo E(Clo) COV(a()) 0
[90 =1 % and Py = 0 W, (25)
the recursive prediction equations:
Mo ) (Mo (O] M) i ]
Pl’|1;1= i—1\Yi-1 30 i—1\Vi-1)4i—1 it i—1\Yi-1 30 i—1\Vi-1)4i—1
0 I 0 I
+ G 0 (26)
0 Wil
aiji-1 My (0i1)aiy
n = N 27
[9111'—1] [ 0i1 .
and the updating equations:
G; = Py [CT, o]'[[CT, o01P;ii[CT, O]+ R, (28)
Pyi=[I—G[CL, O]Py1, (29)
a; ajji—1 T o
Al =15 + Gi(y; — Ci_ aji-1), (30)
0; Oiji—1

where Q; is assumed to be known a priori and R; = Cov(e;) which can also be adaptively estimated
by Eq. (18).

2.4. Model III based on MEKF
An identical state space representation to Egs. (20) and (21) is proposed here. However, the

diagonal coefficient matrix M; = diag[m,,...,m,] is assumed to be time-varying system
parameters rather than a constant vector. The MEKF introduces a very efficient parallel
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computational scheme for system parameters identification [29]. The modification is achieved by
an improved linearization procedure, which results in that the MEKF algorithm can be applied to
real-time system parameter identification even for time-varying stochastic systems. The MEKF
algorithm consists of two sub-systems. Algorithm I, which deals with model (31) and (32) below,
is a modification of the EKF, where the real-time linear Taylor approximation is not taken at the
previous estimate. Instead, in order to improve the performance, it is taken at the optimal estimate
of state vector ¢; given by a standard Kalman filtering algorithm called Algorithm II, which deals
with model (33) and (34) below. Therefore, the system can be reformulated as the nonlinear

stochastic system
Ajy M;(0)a; Vi
_ , 31
bm] [ 0 ]+LJ Gh

yi= [C,'Tfl O] + &, (32)

to which the Algorithm I can be applied, and subsystem
aiy1 = Mi(0)a; +vi, (33)

yi=Cliai+e, (34)

to which the Algorithm II can be applied. The two algorithms are applied in parallel startlng with
the same initial estimate, where Algorithm I is used for yielding the estimate [a; 9] with input
a;—1 obtained from Algorithm II, which is used for yielding the estimate &; with the input
[@i_ 0;_ 1]' obtained from Algorithm I. The two-algorithm procedure listed below is called the
parallel algorithm.

Algorithm I. Set

do E(ap) ao
[éo E00) and Py = Cov( 90]>. (35)
Fori=1,..., N, compute the recursive prediction equations:
T
0 M1 (0i-1)a; 0 M1 (0i-1)a;
P 1(~ a1 P 1(~ 1)di—1 Lo, (36
5 ai—| O0i—1 3 aj—| 0i-1
9,'_1 01‘—1

i1 | Mi_1(0;-1)ai
léiul] B [ 0i-1 ] 47
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and the updating equations:

Gi= Py [CL, OI'IICL, 01Py[CE, O + R, (38)
Py =[—G[CL, O)Py1, (39)
a; i1
5l =15 |+ G~ CLidii), (40)
0; Oiji—1 !

where Q; = 0, = Cov( H) R; = Cov(e;), and 4,_; is obtained by the following Algorithm II.
Algorithm II. Set

&() = E(a()) and P() = COV(a()). (41)

Fori=1,..., N, compute the recursive prediction equations:
Pyt = [Mi1 i D)IPi-yia [Mia (001" + O, (42)
Ajji—1 = M1 (0;-1)ai (43)

and the updating equations:

G; = Py—1Ci[CL Pyioi Cimy + R, (44)
Py =[I = G,CL 1Py, (45)
a; = ajji—1 + Gi(y; — Cl-T_lfli\i—l), (46)

where Q; = O, = Cov(v)), R; = Cov(g;), and 0,_; is obtained from Algorithm I. o

However, in order to apply the above MEKF process, we still need an initial estimate 0y:=0o),
which should be properly chosen so as to be convergent to the true underlying process and the
recursive filtering policy particularly for the periodic signal of rotating machinery will greatly
reduce such a requirement and significantly stabilize the filtering estimation. Evidently, the
parallelism we have considered here is fundamentally motivated by the need for an evaluation of
the Jacobian matrix of the (nonlinear) vector-valued function M;_1(0;-1)a;— and the prediction
term [djji— 9,-|l-_1]T at the optimal position @;_; at each time instant. Relevant work addressing
efficient systolic implementation for Kalman filter can be found in Ref. [30]. As well, it must be
pointed out that all existing EKF algorithms are ad hoc schemes since different linearizations have
to be used to derive the results [31,32]. Hence, there is no rigorous theory to guarantee the
optimality of the EKF or MEKF algorithm in general [29]. The performance of EKF or MEKF is
dependent on the status of the vibration data to be analyzed and also the effectiveness of
linearization.

2.5. Model order selection criteria

A major concern with parametric spectral analysis methods is the selection of the order of the
AR model (or prediction error filter). If the order is too small, resonances in the data cannot be
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resolved and the spectral estimates will be biased and smoothed and some information will be lost.
On the other hand, if the model order is too large, spurious peaks (instabilities) occur in the
spectral estimates which result in a large error variance and might be misleading and cause a
diagnosis error [12,33]. Recently, a number of AR model order selection criteria are available, e.g.
the Akaike information criterion (AIC), final prediction error (FPE), coefficient of determination
(COD), minimum description length (MDL), etc. Their advantages and disadvantages have been
well addressed in many literatures, e.g. Ref. [34].

However, it should be kept in mind that they should be used as a guide only, since extensive
experimental results reported in the literature indicate that the above model order selection
criteria do not yield definitive results in every case [33]. Further study of AR model order selection
is an interesting and important area of investigation, but beyond the focus of this study. Our
experiments using on-line gearbox vibration signals showed that analysis based on AIC, FPE and
COD together can provide the reliable guidance for selecting AR model order in this study.

The most commonly used criterion AIC, using maximum likelihood principles and given by

N
AIC(p) = In|R;| + 2pd”, (47)

i=1

where p is the model order, N is the number of data points, f?,- 1s the covariance matrix of the
measurement noise and d is the dimension of the time series under investigation, gives a
compromise between model complexity and goodness of fit, and tracks both the decreasing error
power and the increasing spectral variance with respect to an increasing model order. Usually, the
AIC tends to underestimate the model order with increasing signal-to-noise ratio (SNR).

The FPE criterion for determining the order of AR models is perhaps the most widely known
weighted residual error method, and is given by

N (A
+tr+l,

FPE() ==~ Ry,

(43)
where R, is the estimate of the covariance matrix of measurement noise under order p and will be
replaced by Ry obtained at the final time instant using Eq. (18). The FPE gives excellent results
for processes which can be adequately described by an AR model. However, it is known to
underestimate the model order with increasing SNR.

The COD represents the proportion of variation in the dependent variable that has been
explained or accounted for by the regression line and is given by

2
COD(p) = 1 — % (49)
¥
where 62 is the variance of residuals and will be replaced by Ry obtained at the final time instant
using Eq. (18) and a§ 1s the variance of the measurand y;, i = 1,2,..., N. The value of the COD
may vary from zero to one. A COD of zero indicates that none of the variation in the time series
of interest is explained by the regression equation; whereas a COD of one indicates that 100% of
the variation of the time series of interest has been explained by the regression equation. This
method is insensitive to changes in model order as p is increased, but it can give sufficiently
reliable results in some applications.
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2.6. Test for optimality

The models having been identified and the parameters estimated, diagnostic checks are then
applied to the fitted models. The test to determine whether the innovations series z; is a white
sequence, thus indicating optimum filter behavior, is based upon an estimate Vj of the
autocorrelation sequence V. Data is processed in batches of N samples. For a given batch, N,
samples of Vi given by

1 N-1

i=k
fork=0,1,..., Ny — 1 are calculated (N;< N). The above is an asymptotically unbiased estimate
with mean and (approximate) covariance given by
- k
£ = (1- ) (s1)
A N 1 &
CoVV o IV ilna) = 55 D OV il Vit + Vel Vieily ), (52)
[=—00

where Cov(a, b) = E{[a — E{a}] - [b — E{b}]}, and [-];; denotes the element in row i and column j of
the matrix. The estimate can also be shown to be consistent because the summation in Eq. (52) is
finite and asymptotically normal. It is the Gaussian property of ¥, that we use to test for
whiteness of the innovations sequence z;. From the 95% confidence limit test for a random
variable X with Gaussian distribution,

P{—Xo<X<Xo} =095 for Xy = 1.960,. (53)

This can be applied to, for example, elements in the main diagonal of V. For z; a white sequence,
from Eq. (52) it follows that

. A 1
Cov([Vidis IV ilmn) = 55 Volim Vol for ke =1>0. (54)
The variance of a diagonal element [IA/k]i’l- is then given by
A 1 =~

var([Vi];) = N[VO]IZJ" k>0 (55)

and substituting Eq. (55) into Eq. (53) results in the limit(s) for the test

1.96 ~

Xo=—=[Vol: 56
0 \/N[ 0]1,1 ( )

The actual test is performed by determining the percentage of values of [IA/k]l-’l- for k=
1,2,..., Ny — 1, which fall outside of the range X. If this is less than 5%, then z; is considered
white. The test can be done on several of the main diagonal elements of V) and simulations have
shown good results using the two extreme elements [35]. The Kolmogorov—Smirnov goodness-of-
fit test (K-S test, cf. Appendix A) under the significance level of 5% together with the present
optimality check will be applied to test whether the innovations series z; is a white sequence in this
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study. However, the whiteness of innovations sequence is a sufficient condition only under the
assumption that transition coefficient matrix AM; is known. When M; is unknown, an additional
condition for filter optimality, namely that the innovations have zero mean, i.e.,

E{z} =0 (57)

fori=0,1,..., N must be imposed on the model so as to suffice for optimality testing [35]. This
additional condition should be applied to models II and III.

2.7. Parametric spectral analysis in T-F domain

It can be shown that the parametric spectrum of the signal depends on the estimated parameters
of time series models. In fact, the relationship is given by

Py(f)
H(IP
that is, the signal power spectrum density (PSD) depends on what can be expressed as the product
of Py(f), PDS of the white noise (Py(f) = Pno), and H(f), frequency response of the linear
filter. After estimating the coefficient matrices of the VAR model, an instantaneous estimating of
the spectral density function, which in the multivariate case is a matrix valued function of
frequency, can be given in terms of the VAR coefficient matrices

PAf) = [H ' (NDIRIH ()], (59)

where the asterisk mark denotes the conjugate complex and

P(f) =

(58)

HN) =13 Autige Pk (60)
k:1

The PSD function (59) is adaptive because each coefficient matrix A x(i) is considered to be subject
to a stochastic process in order to fit the time-varying spectral characteristics of the vibration
signals. In this manner, the model can, in principle, follow rapidly varying spectra because it has
an inherently non-stationary structure. Accordingly, the PSD function, expressing the spectrum
by using the time-varying VAR parameters, becomes a function of two variables, time i and
frequency f'in the same way as for all T-F distributions [2].

3. Model evaluation using simulated signals

Two simulated signals are tested in this section. The results of optimality tests are generalized in
Table 1. To provide a convenient manner, the construction of simulated signal and the resulting
T—F maps will be presented first in each case. It is then followed by the description of model order
selection procedure and the optimality tests for white Gaussian assumption and zero mean of
innovations.
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Table 1
Generalization of model evaluation using simulated signals®
Signal Model Order p K-Stest Pr (%) Zero mean test of innovations in four intervals
Ist 2nd 3rd 4th
Exponentially decaying signal I 1 13.26 —
I 100 1 12.46 1.4319¢-02 2.7542¢-03 1.6372e-03 3.0795e-02
11 1 12.41 1.4528¢-02 2.7996¢-03 1.6640e-03 3.0791e-03
Simulated signal of gear fault 1 1 0.88 —
11 25 1 0.78 1.0159¢-01 1.3704e-02 9.3447e-03 6.7116e-03
11 1 0.78 1.3168e-01 1.9204¢-02 1.1662¢-02 8.4520e-03

Pr (%) denotes the outlier percentage. The intervals of the exponentially decaying signal consist of
[0,0.5], [0.5,1.0], [1.0,1.5] and [1.5,2.0]s. And, the intervals of the simulated signal of gear fault consist of [0°,90°],
[90°,180°], [180°,270°] and [270°,360°]. K-S test denotes the Kolmogorov—Smirnov goodness-of-fit test, where 0
denotes that the null hypothesis that innovations can be adjusted to Gaussian distribution is accepted under 5%
significance level and 1 denotes rejection of null hypothesis.

3.1. Exponentially decaying signal

The exponentially decaying signal with abrupt changes in frequency composition considered in
this section is artificially obtained and composed of three distinct frequency components which
overlap with each other and have different decay factors. However, in order to examine the
adaptation and T-F resolution capabilities of the proposed models, abrupt changes in spectral
contents are introduced into this exponentially decaying signal. This artificial signal is expressed
by

Fy, 0<r<0.5s,
S(n) =< F1+ F>, 0.5s<t<1.5s,
Fi+F,+F; 15s<t<2.0s,

where

Fi=¢"? cos(2nf'\n) = e "2 cos(2n15n),
Fy, =¢7" cos(2nfyn) = e™" cos(2n35n),

Fy=e"/* cos(2nf3n) = e* cos(2n25n)

and /| = 15Hz, f, = 35Hz and f; = 25Hz are the three distinct frequency components, e
e and e~"/* the three decay factors, n = [0 : 0.001 : (2 — 0.001)] and sampling frequency is then
1 kHz (Nyquist frequency is 500 Hz). Therefore, abrupt changes in the major frequency
composition take place at time instants 0.5 and 1.5, respectively.

The signal and the resulting T-F maps are presented in Fig. 1, where the abrupt changes of
frequency composition can be observed in either the time-domain signal as shown in Fig. 1(a) or
the T-F maps as shown in Figs. 1(b)—(d). As can be seen, very consistent T—F representations are

—n/2
b
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Fig. 1. Exponentially decaying signal and T-F maps, where the sampling frequency f is 1 kHz, time resolution is 1
mini-second and frequency resolution is 0.1 Hz. (a) Exponentially decaying signal, (b) T-F map of model I, (c) T-F map
of model II, (d) T-F map of model III.

presented by all models which correctly capture the actual frequency components after a certain
period of unstable adaptation at the beginning of each of [0,0.5], [0.5, 1.5] and [1.5, 2.0] s intervals,
respectively.

The optimum order indicated by the AIC and FPE is always p = 205 for each model as shown
in Fig. 2, whereas the COD indicates that p = 250 is the optimum one for each model. However,
our experiments revealed that model with the order of 205 or higher present a longer unstable
adaptation procedure and relatively stronger spurious components especially within the [1.5,2.0]s
interval in comparison with lower order values, whereas model with the orders lower than 80
cannot correctly recover the frequency components within [1.5,2.0]s and thus results in a low-
frequency resolution. Therefore, order p = 100 is finally determined for each model based on
extensive tests. Table 1 illustrates that the outlier percentages of all models, 13.26%, 12.46% and
12.41%, are larger than 5% and thus are not strictly consistent with the whiteness assumption of
innovations sequence.

In addition, all models fail the K-S test for Gaussian assumption at 5% significant level as
indicated by either the normal probability plots as shown in Figs. 3(a)—(c), respectively, where the
plot of innovations of each model is not linear, or the K-S statistics, 13.6514, 13.5996 and 13.4711,
which are larger than the K-S critical value 0.8950. Figs. 3(d) and (e) show that the means of
innovations of models II and III tend to zero at a very fast rate at the initial filtering stage and
strictly progress forward at levels close to zero over the time horizon.
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Fig. 2. AIC, FPE and COD order selection criteria for the exponentially decaying signal, where the optimum order
indicated by AIC and FPE is p = 205 for each model, respectively, and the optimum order indicated by COD is p = 250
for each model, respectively. (a) AIC for model I, (b) FPE for model I, (c) COD for model I, (d) AIC for model II, (e)
FPE for model II, (f) COD for model II, (g) AIC for model III, (h) FPE for model III, (i) COD for model III.

However, inconsistency with the white Gaussian assumption does not harm the quality of the
resulting T—F representations as shown in Figs. 1(b)—(d). Further experiments were performed
and showed that model with outlier percentage less than 5% may not necessarily present
acceptable T-F representation. As well, models II and III are found to be relatively more sensitive
to the initialization of filters, i.e. the selection of initial filter parameters, than model 1. Therefore,
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Fig. 3. Normal probability plots and zero mean optimality tests of innovations for the exponentially decaying signal.
The K-S statistics of models I, IT and III are 13.6514,13.5996 and 13.4711, respectively. The K-S critical value is
0.8950. (a) Normal probability plot of model I, (b) normal probability plot of model II, (c) normal probability plot of
model III, (d) zero mean test of innovations for model II, (¢) zero mean test of innovations for model III.

appropriate initialization of filters should be emphasized here for models II and III so as to obtain
desirable T-F representations.

3.2. Simulated signal of gear fault

A simulated signal similar to the one used in Ref. [36] is constructed in this section to evaluate
the performance of the proposed three models. This example is intended to numerically generate
simulated signal which possesses some major features of gear vibration signal under faulty state,
say non-adjacent tooth cracks. This simulated signal takes the form of a time-domain average
containing 1024 sampling points and has five components, a pure sine wave, an amplitude-
modulated sine wave, a frequency-modulated sine wave and two Gaussian impulses, as given by

S(n) = Ay sin(2nf |n) + (1 + A, cos(2nf,n))A3 sin(2nf 3n)
+ Ay sinQ2nf 4n + As sin(2nf sn))

g exp (<2 (n=50)") - exo (26 (n-)7).
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where /| =80Hz, f, =fs=2Hz fy; =120Hz, f, = 160Hz, 4, = A4 = 1.5, 4, =0.75, A3 =1,
As =2, A¢ = A7 =3, k1 =k, =256, ny =256, n, =512, N=1024, n=[0: T, : (1 = Ty)], Ty =
0.9766 mini-second and sampling frequency is then 1.024 kHz.

Fig. 4 shows the signal in time-domain and the resulting T-F maps. It is clear that the resulting
T-F maps produced by the three models as shown in Figs. 4(b)—(d) significantly outperform that
produced by STFT in Ref. [36] in either capturing correct components or providing highly delicate
T-F resolution. The pure sine wave, amplitude-modulated sine wave and frequency-modulated
sine wave are successfully identified by each model. Further inspection reveals that models II and
III show some advantages over model I with respect to the accuracy of how the two Gaussian
impulses, which are supposed to appear as two small patches centered at 90° and 180°, are locally
emphasized. In particular, after the identification of the second Gaussian impulse at 180°, model I
presents very slightly spurious power distribution close to the zero frequency boundary within the
angular interval of [180°, 360°]. On the other hand, similar to the previous case using exponentially
decaying signal, it is found that both models II and III have relatively higher requirement for an
appropriate initialization of filter in order to obtain an acceptable T-F representation. Therefore,
an appropriate model initialization is still necessary for models IT and III.

The results of model order selection are presented in Fig. 5. All criteria indicate that order
p = 25 is the optimum one for each model. Therefore, order p = 25 is assigned to each model,
respectively. The K-S test shows that the innovations sequence generated by each model is not
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Fig. 4. Simulated signal of gear fault and T-F maps, where the sampling frequency f, is 1.024kHz, frequency
resolution is 0.1 Hz and angular resolution is 0.3516° for all T-F maps in this figure. (a) Simulated signal of gear fault,
(b) T-F map of model I, (¢) T-F map of model II, (d) T-F map of model III.
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Fig. 5. AIC, FPE and COD order selection criteria for the simulated signal of gear fault, where the optimum order is
p = 25 as indicated by all criteria for each model, respectively. (a) AIC for model I, (b) FPE for model I, (c) COD for
model I, (d) AIC for model II, (¢) FPE for model II, (f) COD for model I, (g) AIC for model III, (h) FPE for model III,
(i) COD for model III.

Gaussian as the K-S statistics, 11.3499, 11.5429 and 11.4466, are larger than the critical value
0.8950 as shown in Table 1.

In addition, the normal plots of innovations in Figs. 6(a)—(c) are not linear. However, the
whiteness assumption of innovations is valid for each model under such an order as indicated by
their outlier percentages, 0.88%, 0.78% and 0.78% which are less than 5%. Also, the zero mean
tests of innovations in Figs. 6(d) and (e) show that the mean of innovations generated by each
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Fig. 6. Normal probability plots and zero mean optimality tests of innovations for the simulated signal of gear fault.
The K-S statistics of models I, IT and III are 11.3499,11.5429 and 11.4466, respectively. The K-S critical value is
0.8950. (a) Normal probability plot of model I, (b) normal probability plot of model II, (c) normal probability plot of
model III, (d) zero mean test of innovations for model II, (¢) zero mean test of innovations for model III.

model converges to level near zero quickly. Therefore, the optimum behavior of filter is obtained
by each model in this case.

It is noteworthy that alternative non-parametric T-F transforms such as Wigner—Ville or
wavelets could be attempted and compared with the proposed parametric models. However, a
relatively acceptable identification of major frequency components is usually accompanied by the
presence of spurious components for the Wigner—Ville transform, while for wavelet transform a
precise identification in, say, frequency domain is simultaneously at the expenditure of time
domain resolution. Thus, under the premise of a constant number of sampling points, the
proposed three models are more favorable.

4. Conclusions

This paper proposes three new adaptive parametric models transformed from time-varying
vector-autoregressive model with their parameters estimated by means of noise-adaptive Kalman
filter, extended Kalman filter and modified extended Kalman filter, respectively, on the basis of
different assumptions. The performance analysis of the proposed adaptive parametric models is
demonstrated using numerically generated non-stationary test signals. The results indicate that
the proposed models possess appealing advantages in processing non-stationary signals and thus
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are able to provide reliable T-F domain information for condition monitoring. In particular, the
EKF- and MEKF-based models demonstrate appealing advantages in localizing the gear fault-
induced features, while the NAKF-based model demonstrates strong adaptability to a wide
variety of model initialization. Further analysis using actual on-line vibration signals of gearbox
will be presented in Part 2 of this study.
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Appendix A. Kolmogorov—Smirnov goodness-of-fit test

The Kolmogorov—Smirnov (K-S) goodness-of-fit test compares an empirical distribution
function with the distribution function of the hypothesized distribution [37].

To define the K-S statistic, we must first define an empirical distribution function. For the K-S
test, we define an empirical distribution function F,(x) from our data X, X»,..., X, as

(number of X;’s<x)
n

Fn(x) =

(A.1)

for all real numbers x. Thus, F,(x) is a (right-continuous) step function such that F,(x;) = i/n for
i=1,2,....nIfF (x) is the fitted distribution function, a natural assessment of goodness of fit is
some kind of measure of the closeness between the functions F, and F. The K-S test statistic D,, is
simply the largest (vertical) distance between F,(x) and F(x) for all values of x and is defined
formally by

D, = sup{|F,(x) — F(x)]}. (A.2)

X
(The ‘sup’ of a set of numbers A4 is the smallest value that is greater than or equal to all members
of A. The ‘sup’ is used here instead of the more familiar ‘max’ since, in some cases, the maximum

may not exist. For example, if 4 = (0, 1), there is no maximum but the ‘sup’ is 1.) D, can be
computed by calculating

_— . 1
D} = max {L—F(x(i))}, D, = [max {F(x(i)) ! , } (A.3)

I<i<n (n <i<n
and finally letting
D, = max{D;, D }. (A.4)
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Suppose that the hypothesized distribution is N(u, ¢*) with both u and ¢> unknown. We can
estimate  and 62 by X(n) and S*(n), respectively, and define the distribution function to be that of
the N(X(n), S*(n)) distribution; i.e., let F(x) = &{[x — X/ S?(n)}, where @ is the distribution
function of the standard normal distribution. Using this ' (which has estimated parameters), D,
is computed in the same way, but different critical points must be used. An accurate
approximation, which obviates the need for large tables, is provided by Law and Kelton [37];
namely, we reject H, if

0.85
<f —0.01 + N

where o is always 0.05 in this study and thus ¢]_, takes the value of 0.8950 as shown in Table 6.14
on page 390 by Law and Kelton [37].

>Dn >c_, (A.5)
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